DANIEL WOJCIK ## TOXICITY OF CHEMICAL BAITS AGAINST THE RED IMPORTED FIRE ANT, SOLENOPSIS INVICTA¹ R. Levy², J. F. Carroll², Y. J. Chiu², and W. A. Banks³ #### ABSTRACT Toxic baits of 402 chemicals were evaluated in the laboratory to determine their effectiveness in controlling the red imported fire ant, Solenopsis invicta Buren. No chemical bait was as consistently as effective as mirex for the control of the red imported fire ant, although compounds ENT-27931, ENT-27932, ENT-27933, ENT-27934, ENT-27935, ENT-27936, ENT-27937, and ENT-62469 were promising and exhibited relatively consistent delayed action over a 10 to 99-fold dosage. Mirex has been found to be the most effective toxicant for use in baits against the red and black imported fire ants, Solenopsis invicta Buren and S. richteri Forel, respectively (Lofgren et al. 1962, 1963, 1964, 1967; Stringer et al. 1964). Despite an extensive program for laboratory evaluation of alternate bait toxicants, no other compound has been found to possess mirex's consistent delayed action over a 100-fold or greater dosage range (i.e. Class V compound) (Lofgren et al. 1967, Levy et al. 1973, Wojcik et al. 1973). Levy et al. (1973) reported that although Shell SD23687 exhibited Class V mortality against the imported fire ant when cold-aged before testing, the compound was not consistently as effective as mirex in repeated laboratory tests. Field tests have shown that it is ineffective against natural infestations of the fire ant (Banks et al. unpublished). Only 11 chemicals out of a total of more than 1500 tested toxicants have demonstrated delayed action over a 10-fold to 99-fold dosage range (i.e. Class IV compounds) (Lofgren et al. 1967, Wojcik et al. 1972, and Levy et al. 1973). Most of these compounds have been mirex analogs and have not shown consistent delayed toxicity in the laboratory and/or field tests. This paper summarizes the mortality data of 402 bait toxicants which have been evaluated in the laboratory to determine their potential for controlling the red imported fire ant. #### METHODS AND MATERIALS Toxicants were tested in once-refined soybean oil at concentrations of 0.01, 0.1, and 1.0% against red imported fire ants collected from several mounds in the Gainesville, Florida area. The evaluation procedures described by Lofgren et al. (1967) and modified by Levy et al. (1973) were used for the tests. All chemicals, with the exception of those compounds identified by Entomology Number (ENT) are listed by item number according to their chemical name and structural formula in USDA Agricultural Handbook No. 340 (1967). The chemical names of compounds identified by ENT are given. ^{&#}x27; Florida Agricultural Experiment Station Journal Series No. 5099. ² Department of Entomology and Nematology, University of Florida, Gainesville, Florida 32611. ³ Insects Affecting Man Research Laboratory, USDA-ARS, Gainesville, Florida 32601. Bait toxicants were classified by the following system (Lofgren et al. 1967). Delayed toxicity was defined as less than 15% mortality after 24 hrs and more than 89% mortality at the end of the test period. Class I.—Compounds that gave insufficient kill at the preliminary test concentrations (less than 90% kill at the end of the test period). #### Class Ia-Maximum kill 0 to 29%. Ib-Maximum kill 30 to 59%. Ic-Maximum kill 60 to 89%. Class II.—Compounds that killed too fast at the higher concentrations but gave insufficient kill at the lower concentrations; that is, 15% or more kill after 24 hrs and 90 to 100% at the end of the test period at the higher concentrations but less than 90% kill with the lower concentrations at the end of the test period. #### Class IIa-Produced fast kill at 1.0%. IIb-Produced fast kill at 0.1 and 1.0%. IIc-Produced fast kill at 0.01, 0.1, and 1.0%. Class III.—Compounds that show delayed action over a onefold to ninefold dosage range. #### Class IIIa-Delayed action occurred between 0.25 to 1%. IIIb-Delayed action occurred between 0.025 to 0.1%. IIIc-Delayed action occurred between 0.0025 to 0.01%. ${\it Class~IV}.{\it --}{\it Compounds}$ that show delayed action over a tenfold to ninety-ninefold dosage range. . ${\it Class~V.}$ —Compounds that show delayed action over a hundred fold or greater dosage range. #### RESULTS AND DISCUSSION Results from the tests are shown in Table 1. No chemical bait was as consistently as effective as mirex (5008) for the control of the red imported fire ant, although compounds ENT-27931, ENT-27932, ENT-27933, ENT-27934, ENT-27935, ENT-27936, ENT-27937, and ENT-62469 were promising and exhibited relatively consistent delayed action over a 10 to 99-fold dosage. The similar structures of the 7 phosphorothioic acid bait toxicants from Hebrew University indicated that ortho, para, or meta substitution of one or more bromophenyl or fluorophenyl radical(s) on the basic benzene configuration did not increase delayed toxicity over a wider range of concentrations. No significant additive or synergistic effect resulted when several of these compounds were mixed at a 1:1 dilution at the 3 test concentrations. In addition, these compounds, as well as ENT-62469 are basically phosphatic and should not exhibit the environmental persistence (i.e. slow environmental [ecological] degradability) that has been attributed to mirex and other chlorinated hydrocarbon insecticides. TABLE 1. CHEMICALS EVALUATED FOR CONTROL OF THE RED IMPORTED FIRE ANT. | fortality
Class | | | | | ٠ | | Tox | icant | Toxicant Item Number | Num | Je | | | | | | | | |--------------------|---|--|--|--|--|--|--|--|--|--|--|--|---|---|--|--|--|--| | Ia | 0102
1360
1759
2344
4909
5470
5822
5905
5905
6073
6145
6273
6273
6380
6436
77576 | 0105
1362
1761
2348
4913
5541
5839
5906
6074
6146
6276
6383
6383 | 0122
1368
1990
2349
4918
5670
5841
5907
6096
6147
6147
6147
6147
6147 | 0180
1374
1995
2351
4922
5671
5844
5908
5961
6100
6148
6301
6444
7655 | 0181
1391
2003
2630
4924
5681
5681
5912
5963
6101
6150
6348
6404
6445 | 0184
1392
2080
2080
2632
4925
5683
5853
5970
6105
6153
6413
6462
7686 | 0205
1395
2183
2644
4929
5684
5684
5871
6112
6112
6112
6414
6468
7980 | 0273
1398
2185
3163
3163
4930
5686
5859
5916
6114
6165
6416
6708
8047 | 0279
1400
2193
4181
4932
5687
5860
5923
6916
6207
6358
6417
7112 | 0280
1404
2311
4207
4936
5689
5868
5926
5926
6117
6214
6361
6419
7119 | 0326
1406
2315
4260
4938
5693
5879
5927
6122
6227
6420
7132
8057 | 0351
1540
2316
4891
4992
5694
5881
5932
6124
6239
6366
6424
7138 | 0434
11550
2320
4896
4993
5697
5695
5933
6002
6125
6240
6367
6425
7144
8101 | 0561
11552
2326
4898
5039
5698
5698
5696
6042
6042
6130
6248
6368
6368
6426
7310
8102 | 1001
1753
2332
4902
5091
5699
5897
5940
6048
6133
6252
6373
6427
7346 | 1209
1756
2340
2340
4905
5702
5898
5942
6068
6135
6268
6374
6428
7540 | 1340
1758
2342
4907
5437
5713
5899
5944
6070
6144
6269
6377
6433
7575 | | | Ib | 0107
2377
6049 | 0177
2518
6102 | 0178
2641
6108 | 0179
2913
6134 | 0182
5189
6164 | 0187
5615
6168 | 0271
5666
6293 | 0276
5849
7246 | 0282
5865
7495 | 0291
5891
8145 | 0310
5917
8402 | 0321
5934 | 0335
5941 | 0592
5946 | 0917
5965 | 1889
6045 | 1989
6046 | | | ~ | ٠ | |------------|--------| | - 2 | | | q | ب | | - 5 | 3 | | 7 | 4 | | | • | | -12 | 3 | | - 7 | 3 | | - 1 | - | | - 6 | 5 | | | ξ. | | | | | C | , | | ٤ | 2 | | 9 | ر | | 9 | ٢ | | 1 | ショ | |) [| 4 | |) 10 | | | 101 | 1 | | hla 1 (C | 1 | | bla 1 (C | מוני ד | | hable 1 (C | able 1 | | Pable 1 (C | מוני ד | | Table 1 (C | able 1 | | Ic | 0101
5931 | | 0126 0269 0281 0340 1244 1281 1368 1390 1410 2220 4068 4972 5189 5845 5856 5874 5997 6005 6043 6126 6218 6237 6270 6278 6322 7519 | 0281
6043 | 0340 | 1244
6218 | 1244 1281
6218 6237 | 1368
6270 | 1368 1390
6270 6278 | 1410
6322 | 2220
7519 | 4068 | 4972 | 5189 | 5845 | 5856 | 5874 | |------|--------------|--------------------------|---|----------------|--|--------------|------------------------|--------------|--|--------------|--------------|------|------|------|------|------|------| | IIa | 2647 | 5921 | 5921 6225 6288 6309 6343 6431 6433 6434 | 6288 | 6309 | 6343 | 6431 | 6433 | 6434 | | | | | | | | | | IIb | 5991 | 5993 | 5993 6113 6118 6136 6193 6199 6204 6286 | 6118 | 6136 | 6193 | 6199 | 6204 | 6286 | | | | | | | | | | IIc | 6199 | 6343 | | | | | | | | | | | | | | | | | IIIa | 1889 | 5962 | 6018 | 6057 | 6018 6057 6067 6069 6079 6094 6129 6170 6172 6228 6305 | 6909 | 6009 | 6094 | 6129 | 6170 | 6172 | 6228 | 6305 | 7618 | | | | | IIIb | 5955 | 6013 | 5955 6013 6169 6200 6307 | 6200 | 6307 | | | | | | | | | | | | | | IIIc | 5990 | 6019 | 5990 6019 6053 6111 6197 6223 6260 6295 6329 | 6111 | 6197 | 6223 | 6260 | 6295 | 6329 | | | | | | | | | | IV | ENT | ENT-27931•
ENT-27935• | ENT-27931* ENT-27932* ENT-27933*
ENT-27935* ENT-27936' ENT-27937* | VT-27
VT-27 | ENT-27932° ENT-27933° ENT-27934°
ENT-27936° ENT-27937° ENT-62469° | ENT-
ENT- | 27933
27937 | EN, | ENT-27934 ⁴
ENT-62469 ¹ | 34ª
59ħ | | | | | | | ÷ | | > | 2008 | | | | | | | | | | | | | | | | | Phosphorothioic acid, O-(m-bromophenyl) O,O-dimethyl ester (R. S. 12 Hebrew University) Phosphorothioic acid, O-(p-bromophenyl) O,O-dimethyl ester (R. S. 11 Hebrew University) Phosphorothioic acid, O-(o-bromophenyl) O,O-dimethyl ester (R. S. 13 Hebrew University) Phosphorothioic acid, O-(p-fluorophenyl) O,O-dimethyl ester (R. S. 14 Hebrew University) Phosphorothioic acid, O-(2,5-dibromophenyl) O,O-dimethyl ester (R. S. 16 Hebrew University) Phosphorothioic acid, O-(2,4-dibromophenyl) O,O-dimethyl ester (R. S. 17 Hebrew University) *Phosphorothioic acid, O-(o-fluorophenyl) O,O-dimethyl ester (R. S. 15 Hebrew University) ^{*}Phosphorothioic acid, O-(2,4-dibromophenyl) O,O-dimethyl ester (R. S. 17 Hebrew Univ *Phosphoric diamide, N,N,N,N* -tetramethyl-p-propyl-[PHT-2066GD (PCRB)] Although many phosphorothioic acid compounds have been tested against the imported fire ant in toxic baits (Lofgren et al. 1973), Nemacide [®] (Phosphorothioic acid, 0-2, 4-dichlorophenyl 0,0-diethyl ester), was the only chemical in this group of compounds that has shown effective Class IV delayed action in the laboratory. Field tests with Nemacide [®] gave poor control of the imported fire ant (Lofgren et al. unpublished). Since an alternate compound that can replace mirex for extended field application is greatly needed, all bait toxicants exhibiting effective toxicity (i.e. compounds exhibiting consistent Class IV or greater delayed action) will be considered potential candidates for control of the red imported fire ant. #### ACKNOWLEDGEMENTS The authors wish to thank D. M. Hicks and J. K. Plumley from the Insects Affecting Man Research Laboratory, ARS-USDA, Gainesville, Fla. for their technical assistance throughout the screening program. This research was supported by Cooperative Agreement Grant No. 12-14-100-10, 951 (33) entitled Toxicants for Control of Imported Fire Ants. ### LITERATURE CITED - Levy, R., Y. J. Chiu, and W. A. Banks. 1973. Laboratory evaluation of candidate bait toxicants against the imported fire ant. Fla. Ent. 56:141-46. - Lofgren, C. S., F. J. Bartlett, and C. E. Stringer. 1962. Imported fire ant toxic bait studies: GC-1283, a promising toxicant. J. Econ. Ent. 55:405-7. - Lofgren, C. S., F. J. Bartlett, and C. E. Stringer. 1963. Imported fire ant toxic bait studies: evaluation of carriers for oil baits. J. Econ. Ent. 56:62-6. - Lofgren, C. S., F. J. Bartlett, C. E. Stringer, Jr., and W. A. Banks. 1964. Imported fire ant toxic bait studies: Further tests with granulated mirex-soybean oil bait. J. Econ. Ent. 57:695-8. - Lofgren, C. S., C. E. Stringer, W. A. Banks, and P. M. Bishop. 1967. Laboratory tests with candidate bait toxicants against the imported fire ant. ARS 81-14. 25p. - Stringer, C. E. Jr., C. S. Lofgren, and F. J. Bartlett. 1964. Imported fire ant toxic bait studies: evaluation of toxicants. J. Econ. Ent. 57:941-5. - U. S. Department of Agriculture, Agricultural Research Service. 1967. Handbook No. 340. Materials evaluated as insecticides, repellents, and chemo-sterilants at Orlando and Gainesville, Fla., 1962-1964. Washington, D. C. 424 p. - Wojcik, D. P., W. A. Banks, J. K. Plumley, and C. S. Lofgren. 1972. Results of laboratory tests with additional candidate bait toxicants against the imported fire ant. USDA, ARS, Special Report 72-03W. 43p. - 1973 Red imported fire ant: laboratory tests with additional candidate bait toxicants. J. Econ. Ent. 66:550.